Skip to main content

There’s no escaping it. We are living in a climate crisis. The main driving force behind climate change is the emission of greenhouse gases through human activities.  Scientists in South Africa have been studying the role of carbon in soil. They believe that by adopting proper soil management, humans can control the amount of carbon in the atmosphere. This in turn, over time, could have a positive effect on climate change. In this article Prof Linus Franke, Associate Professor and Head of the Department of Soil, Crop and Climate Sciences at the University of the Free State, in South Africa explains how.

Too much carbon in the atmosphere

Human activities are the main driver of climate change. This is mainly by burning fossil fuels such as coal, gas, and oil, with the energy sector, industries, transport, buildings, and agriculture as the biggest emitters of greenhouse gases.

Carbon dioxide is the biggest culprit, accounting for 72% of the global warming effect, followed by methane and nitrous oxide.” 

Global warming challenges our longevity

According to the United Nations, the burning of these fossil fuels generates greenhouse gas emissions that wrap around the earth like a blanket. This traps the heat of the sun and results in raised temperatures.

carbon global warming

Soloviova Liudmyla/Shutterstock

It’s important to mitigate climate change and prevent a global temperature rise of more than 1,5 degrees Celsius.

According to the Intergovernmental Panel on Climate Change (IPCC), we are looking at a temperature increase of around four degrees Celsius by the end of this century, if there are no drastic changes in anthropogenic emissions.

Carbon – the connection between the atmosphere, soil, and plants

With an increase in global warming, we can expect more disturbances in weather patterns. This in turn will result in further extreme weather conditions such as droughts, floods, and extremely cold/hot conditions. Annually, millions of people are already losing their lives, livelihoods, and homes due to the effects of global warming.

Twenty years ago, climate change was about analysing trends in data sets. Today, to observe climate change, one can just look out of the window. In the past 10 years, climate change has become a reality

Although carbon dioxide is one of the biggest contributors to global warming, carbon has an important role to play in soil health.

Soil as a major sink of carbon

As plants absorb carbon dioxide from the atmosphere, enormous amounts of carbon are stored as organic soil matter in the upper two metres of soil.  Carbon in the top two metres of soil is 200 times more than the amount that is annually emitted by human activities and three times the amount that is present in the atmosphere or vegetation.

soil and carbon| Longevity LiveOur ultimate aim is to get sufficient amounts of carbon in the soil.

My department is involved in several studies to understand soil carbon and carbon sequestration processes.

Prof Johan van Tol, Associate Professor in the same department, and the group of postgraduate students are conducting research in the Kruger National Park and the Drakensberg.  We are investigating the best ways to preserve carbon and increase the soil carbon levels.  Professor van Tol believes there are two viable options for storing carbon removed from the atmosphere: the soil and the oceans.

Of the two, storing carbon in the soil is more realistic for most people and companies, as ownership and management of this natural resource can be determined. The potential for storing carbon in the soil is vast, yet poor soil management has led to carbon emissions equal to that of burning oil and coal reserves. Good soil management and restoration of degraded soils, on the other hand, can result in considerable sequestration of atmospheric carbon,” he says.

According to him, soil and environmental factors determine the carbon storage potential of the soil.  Indeed, the mountainous soils of the Maloti-Drakensberg (MD), the cool climate and high rainfall have resulted in carbon-rich soils. This area is generally considered a carbon hotspot, yet little is known about the carbon dynamics of these soils.”

Studying the soil

Preliminary results from a project by two of his postgraduate students, Cowan Mc Lean and Jaco Kotze, titled Characterisation of carbon stocks, microbial diversity and degradation of the soils of the Amphitheatre summit, Northern Drakensberg, show that average carbon stocks of the soils are high to very high in the alpine wetlands.

They found that poor land management (overgrazing) has resulted in soil and land degradation (e.g., erosion, draining of wetlands, and loss of vegetation and biodiversity).

The degraded soils are no longer a sinkof atmospheric carbon, but become a sourcethat releases carbon,” he states.

We all believe drastic action is required to restore and protect these important carbon hotspots.

In a study in Kruger National Park, Ph.D. students Tercia Strydom and Odwa Malongweni are investigating the impact of fires and herbivores on soil quality, including carbon content. They found that soil carbon is significantly impacted by fire and herbivores. The changes in vegetation structure due to fire and herbivores are likely to be the key driver of changes in carbon stocks,” explains Prof Van Tol.

Carbon

Odwa Malongweni collecting a soil sample from exclosures in the Kruger National Park.

An agricultural perspective 

Carbon is an essential element for farming. It’s important for a healthy farming system. The study is focusing on high-density grazing, funded by the Regional Universities Forum for Capacity Building in Agriculture. The on-farm performance of different grazing management systems, including selective and high-density grazing, with special reference to the spatial and temporal dynamics of soil carbon, is being investigated.

The grassland biome

The grassland biome of South Africa covers about 20% of South Africas land surface, with more than half of the biome converted to arable land or greatly disturbed by urban development mining activities. The remaining tracks of the grassland biome are mostly used for livestock grazing on natural grassland.

Carbon

Prof Johan van Tol taking a soil sample on top of the Drakensberg.

Professor Van Tol says there are different grazing management strategies for natural grasslands. In continuous grazing systems, animals are given the opportunity to graze all season long with minimal interference. Rotational grazing systems incorporate periodic deferments, allowing field vegetation to recover in a period when grazing is absent.

The more recent strategy of high-density grazing uses large herds, often double or triple the normal stocking densities for an area, grazing intensively on small areas of land for a short period of time, followed by a long resting period of the field.

 

Carbon stocks and high-density grazing

High-density grazing is claimed to improve rangeland productivity by improving soil health and increasing soil carbon stocks to an extent that the emissions of greenhouse gases by livestock may be compensated by soil carbon sequestration. This will improve the condition of the vegetation while enhancing animal productivity on a per-area basis. The adoption of high-density grazing can have major impacts on the sustainability and the economics of livestock production. The aim of the research is to quantify to what extent the claims of increasing soil carbon levels under high-density grazing realise under on-farm conditions.

“We hope that the knowledge generated in this project will be helpful to the broader agricultural sector. Providing knowledge on carbon cycling, environmental sustainability, and opportunities for climate change mitigation in the livestock production sector.”

The protection of grasslands against degradation, while ensuring sufficient, reliable, and sustainable food production, are absolutely key components to drive the national and global development agenda.

About the author:

Carbon mangement Prof Linus Franke, Associate Professor and Head of the Department of Soil, Crop and Climate Sciences at the University of the Free State, in South Africa. By profession, he is an agricultural researcher with a particular interest in combining detailed agricultural research on crop production and agricultural water use in sub-Saharan Africa with wider questions about agricultural sustainability, food security, and how this is impacted by climate change. He is currently the Head of the Department of Soil, Crop, and Climate Sciences at the University of the Free State in Bloemfontein, South Africa. Prof. Fanke has published around 40 papers in international peer-reviewed journals and completed the supervision of around 18 M.Sc. students and 4 Ph.D. candidates.  He regularly acts as a reviewer for the key journals in the field of agriculture, as an external examiner of studentstheses, and on NRF expert panels evaluating research proposals. I hold an NRF rating (C2).

Main Photo credit: Eddie Smit, Tercia Strydom, and Prof Johan van Tol testing the hydrophobicity of soils directly after an experimental fire.

 

 

 

 

 

Professor Linus Franke

Professor Linus Franke

By profession I am an agricultural researcher with a particular interest in combining detailed agricultural research on crop production and agricultural water use in sub-Saharan Africa with wider questions about agricultural sustainability, food security and how this is impacted by climate change. I am currently the Head of Department of Soil, Crop and Climate Sciences at the University of the Free State in Bloemfontein, South Africa. I have published around 40 papers in international peer-reviewed journals, completed the supervision of around 18 M.Sc. students and 4 Ph.D. candidates. I regularly act as a reviewer for the key journals in the field of agriculture, as an external examiner of students’ theses and on NRF expert panels evaluating research proposals. I hold an NRF rating (C2).

Longevity Live is a digital publisher AND DOES NOT OFFER PERSONAL HEALTH OR MEDICAL ADVICE. IF YOU’RE FACING A MEDICAL EMERGENCY, CALL YOUR LOCAL EMERGENCY SERVICES IMMEDIATELY, OR VISIT THE NEAREST EMERGENCY ROOM OR URGENT CARE CENTER. YOU SHOULD CONSULT YOUR HEALTHCARE PROVIDER BEFORE STARTING ANY NUTRITION, DIET, EXERCISE, FITNESS, MEDICAL, OR WELLNESS PROGRAM.

This content, developed through collaboration with licensed medical professionals and external contributors, including text, graphics, images, and other material contained on the website, apps, newsletter, and products (“Content”), is general in nature and for informational purposes only and does not constitute medical advice; the Content is not intended to be a substitute for professional medical advice, diagnosis, or treatment.

Always consult your doctor or other qualified healthcare provider with any questions you may have regarding a medical condition, procedure, or treatment, whether it is a prescription medication, over-the-counter drug, vitamin, supplement, or herbal alternative.

Longevity Live makes no guarantees about the efficacy or safety of products or treatments described in any of our posts. Any information on supplements, related services and drug information contained in our posts are subject to change and are not intended to cover all possible uses, directions, precautions, warnings, drug interactions, allergic reactions, or adverse effects.

Longevity does not recommend or endorse any specific test, clinician, clinical care provider, product, procedure, opinion, service, or other information that may be mentioned on Longevity’s websites, apps, and Content.